Definitions | t T, b, {x:A| B(x)} , E(X), let x,y = A in B(x;y), t.1, x:AB(x), x:A. B(x), a:A fp B(a), strong-subtype(A;B), P Q, ES, AbsInterface(A), e c e', x:A B(x), left + right, P Q, (e < e'), Top, Dec(P), (e <loc e'), e loc e' , x:A. B(x), e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), EState(T), Id, , Type, EqDecider(T), Unit, IdLnk, EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,y. t(x;y), Void, x:A.B(x), S T, suptype(S; T), first(e), A, <a, b>, pred(e), x.A(x), x. t(x), P & Q, e X, s ~ t, f(a), E, s = t, f**(e), False, ff, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , b, tt, P Q, p q, p q, p q, {T}, SQType(T), e = e' |